Application of Data Mining for Product Purchase Pattern Analysis with Frequent Pattern Growth (FP-Growth) Algorithm on Sales Transaction Data
DOI:
https://doi.org/10.33603/jste.v1i1.6034Abstrak
The rapid growth of pet products, especially in Indonesia, makes the business competition in this field more even strict. In these conditions, a good data processing technique is needed, one of them is called the data mining technique. The algorithm used in this study is FP-Growth to generate frequent itemset that will later be used in the decision-making process that can result in a choice. This study took an object of sales transaction data from a pet shop named Ciwo Pet Shop, and the transaction data is processed by using the FP-Growth algorithm. From the results of the tests, it is found that a rule that has the best confidence value is 100% with a combination of pattern products fragrant cat sand 25 liters and equilibria kitten 7.5 kg + 750 gr, It will most certainly buy Whiskas cat food from 85 gr.Referensi
Amelia, R., & Utomo, D. P. (2019). Analisa Pola Pemesanan Produk Modern Trade Independent Dengan Menerepakan Algoritma Fp. Growth (Studi Kasus: Pt. Adam Dani Lestari). KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 416–423. https://doi.org/10.30865/komik.v3i1.1622
Bhaya, W. S. (2017). Review of Data Preprocessing Techniques in Data Mining. Journal of Engineering and Applied Sciences, 12(16), 4102–4107.
Fitrina, N., Kustanto, K., & Vulandari, R. T. (2018). Penerapan Algoritma Apriori Pada Sistem Rekomendasi Barang Di Minimarket Batox. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 6(2), 21–27. https://doi.org/10.30646/tikomsin.v6i2.376
Hartama, D., Perdana Windarto, A., & Wanto, A. (2019). The Application of Data Mining in Determining Patterns of Interest of High School Graduates. Journal of Physics: Conference Series, 1339(1). https://doi.org/10.1088/1742-6596/1339/1/012042
Mardi, Y. (2017). Data Mining : Klasifikasi Menggunakan Algoritma C4.5. Jurnal Edik Informatika, 2(2), 213–219.
Megayasa, I. G. P., Agus, I. K., Aryanto, A., Diputra, I. G. S., Arianta, I. N., & Rusditya, S. (2016). Implementasi Algoritma Apriori untuk Menganalisis Pola Pembelian Konsumen pada Produk SPA. Senapati, 206–210.
Rahayu, W. I., Pane, S. F., Frimanda, L. A., & Kunci, K. (2018). Implementasi Data Mining Dengan Metode K-Means Clustering Untuk Menentukan Iklan Audio Berdasarkan User Behaviors Pada Aplikasi Audio Social Media Svara Di Pt . Zamrud Khatulistiwa Technology. 10(2), 13–19.
Rahmawati, N., Nasution, Y. N., & Amijaya, F. D. T. (2017). Aplikasi Data Mining Market Basket Analysis untuk Menemukan Pola Pembelian di Toko Metro Utama Balikpapan. Jurnal EKSPONENSIAL, 8(1), 1–8.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
JSTE (Journal of Science, Technology, and Engineering) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.