Analisis Pengetahuan Konseptual dan Prosedural Mahasiswa Calon Guru Sekolah Dasar Pada Bilangan Rasional
DOI:
https://doi.org/10.33603/jnpm.v6i2.7056Abstract
References
Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Tathas, J., & Wittrock, M. C. (2011). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. Addison Wesley Longman, Inc.
Adeniyi, C. ., Ogundele, L. ., & Odetola, C. . (2014). Teacher Quality Factors as Determinant of Students ’ Achievement in Mathematics. Jounal of Education and Practice, 5(37), 1–6.
Ayebale, L., Habaasa, G., & Tweheyo, S. (2020). Factors affecting students’ achievement in mathematics in secondary schools in developing countries: A rapid systematic. Statistical Journal of the IAOS, 36(S1), S73–S76. https://doi.org/10.3233/sji-200713
Baker, W., Czarnocha, B., Dias, O., Doyle, K., & Kennis, J. R. (2012). Procedural and conceptual knowledge: Adults reviewing fractions. ALM International Journal, 7(2), 39–65. https://bit.ly/37kgjnI
Baroody, A. J., Feil, Y., & Johnson, A. R. (2007). An alternative reconceptualization of procedural and conceptual knowledge. Journal for Research in Mathematics Education, 38(2), 115–131. https://doi.org/10.2307/30034952
Brousseau, G. (2002). Theory of Didactical Situations in Mathematics (N. Balacheff, M. Cooper, Warfield, R. Sutherland, & Virginia (eds.)). Kluwer Academic Publishers.
Creswell, J. W., & Poth, C. N. (2017). Qualitative inquiry and research design: choosing among five approaches (4th ed.). SAGE Publications Inc.
Forgues, H. L., Tian, J., & Siegler, R. (2015). Why is learning fraction and decimal arithmetic so difficult? Developmental Review, 38(1), 201–221. https://doi.org/10.1016/j.dr.2015.07.008
Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education. McGraw-Hill.
Freudenthal, H. (2002). Didactical phenomenology of mathematical structures. Kluwer Academic Publishers.
Fuentes, S. Q., Bloom, M. A., & Peace, H. (2014). Teaching Science and Mathematics: Preservice Teachers’ Perceptions of Knowledge Needs. Journal of College Science Teaching, 43(3), 30–35. https://doi.org/DOI:10.2505/4/jcst14_043_03_30
Ghazali, N. H. C., & Zakaria, E. (2011). Students ’ procedural and conceptual understanding of mathematics. Australian Journal of Basic and Applied Sciences, 5(7), 684–691. https://bit.ly/35jzA8e
Hiebert, J. (1986). Conceptual and procedural knowledge: The case of mathematics. Lawrence Erlbaum Associates, Inc.
Hill, H. C., Rowan, B., & Ball, D. L. (2005). for Teaching on Student Achievement. 42(2), 371–406.
Hurrell, D. (2021). Conceptual knowledge or procedural knowledge or conceptual knowledge and procedural knowledge: Why the conjunction is important to teachers. Australian Journal of Teacher Education, 46(2), 57–71. https://doi.org/10.14221/ajte.2021v46n2.4
Indonesia Ministry of National Education. (2007). Standar kualifikasi akademik dan kompetensi guru [Standards of academic qualification and teacher competence]. BSNP. https://bit.ly/3oubpKt
Indonesia Ministry of National Education and Culture. (2016). Kompetensi inti dan kompetensi dasar pelajaran pada kurikulum 2013 pada pendidikan dasar dan menengah [Core and basic competencies of lessons in the 2013 curriculum for elementary and secondary level]. Kemendikbud. https://bit.ly/333V1cg
Khashan, D. K. H. (2014). Conceptual and Procedural Knowledge of Rational Numbers for Riyadh Elementary School Teachers. Journal of Education and Human Development, 3(4), 181–197. https://doi.org/10.15640/jehd.v3n4a17
Kilpatrick, J. (2001). Understanding Mathematical Literacy : The Contribution of Research Source Springer. Educational Studies in Mathematics, 47(1), 101–116.
Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics (M. L. S. Committee (ed.)). National Research Council. https://bit.ly/3KRAQ1q
Lawshe, C. H. (1975). A quantitative approach to content validityâ€.Personnel Psychology. Personnel Psychology, 28, 563–575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
Lazić, B., Abramovich, S., Mrđa, M., & Romano, D. A. (2017). On the teaching and learning of fractions through a conceptual generalization approach. International Electronic Journal of Mathematics Education, 12(8), 749–767. https://doi.org/10.29333/iejme/646
Mahir, N. (2009). Conceptual and procedural performance of undergraduate students in integration. International Journal of Mathematical Education in Science and Technology, 40(2), 201–211. https://doi.org/10.1080/00207390802213591
Manandhar, N. K., Pant, B. P., & Dawadi, S. D. (2022). Conceptual and procedural knowledge of students of nepal in algebra: A mixed method study. Contemporary Mathematics and Science Education, 3(1), ep22005. https://doi.org/10.30935/conmaths/11723
Musser, G. L., Burger, W. F., & Peterson, B. E. (2011). Mathematics for elementary teachers: A contemporary approach (9th ed.). John Wiley & Sons, Inc.
National Council of Teachers of Mathematics. (2014). Principles to action:ensuring mathematical succes for all. NCTM.
National Council of Teachers of Mathematics. (2015). NCTM CAEP mathematics content for elementary mathematics specialist addendum to the NCTM CAEP standards 2012 (Issue 2012). https://bit.ly/3snggye
Novita, R., Herman, T., Suryadi, D., Dasari, D., & Putra, M. (2022). How Pre-Service Elementary Teachers Deal with Mathematical Literacy Problems? A Case Study. Advances in Social Science, Education and Humanities Research, 627, 135–143. https://doi.org/10.2991/ASSEHR.K.211229.022
Obersteiner, A., Reiss, K., Dooren, W. van, & Hoof, J. van. (2019). Understanding rational numbers – Obstacles for learners with and without mathematical learning difficulties. In A. Fritz, V. Geraldi, & P. Rasanen (Eds.), International handbook of mathematical learning difficulties (pp. 581–594). Springer. https://doi.org/10.1007/978-3-319-97148-3_34
Pitta-Pantazi, D. (2014). Number teaching and learning. In S. Lerman, E. B. Sriraman, Y. Jablonka, M. Shimizu, R. Artigue, R. Even, Jorgensen, & M. Graven (Eds.), Encyclopedia of mathematics education (pp. 470–476). Springer. https://doi.org/10.1007/978-94-007-4978-8
Radiusman, R., & Simanjuntak, M. (2021). Analisis Kesalahan Mahasiswa Calon Guru Sekolah Dasar dalam Menyelesaikan Soal Pembuktian Aljabar. JNPM (Jurnal Nasional Pendidikan Matematika), 5(1), 149. https://doi.org/10.33603/jnpm.v5i1.4336
Rahmadani, Nurlaelah, E., Herman, T., & Anaguna, N. (2019). Exploration of Primary School Teacher Students’ Understanding in Fraction Concept. Journal of Physics: Conference Series, 1211(1). https://doi.org/10.1088/1742-6596/1211/1/012060
Rittle-Johnson, B., Fyfe, E. R., & Loehr, A. M. (2016). Improving conceptual and procedural knowledge: The impact of instructional content within a mathematics lesson. British Journal of Educational Psychology, 86(4), 576–591. https://doi.org/10.1111/bjep.12124
Rittle-johnson, B., & Schneider, M. (2015). Developing conceptual and procedural knowledge of mathematics. In R. C. Kadosh & A. Dowker (Eds.), The Oxford Handbook of Numerical Cognition (pp. 1118–1134). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199642342.013.014
Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street: Bidirectional relations between procedural and conceptual knowledge of mathematics. Educational Psychology Review, 27(4), 587–597. https://doi.org/10.1007/s10648-015-9302-x
Rittle-Johnson, B., & Siegler, R. S. (1998). The relation between conceptual and procedural knowledge in learning mathematics: A review. In C. Donlan (Ed.), The Development of Mathematical Skills (pp. 75–110). Psycology Press. https://doi.org/10.4324/9781315784755-6
Schoenfeld, A. H. (2002). Making Mathematics Work for All Children: Issues of Standards, Testing, and Equity. Educational Researcher, 31(1), 13–25. https://doi.org/10.3102/0013189X031001013
Shulman, L. (1987). Knowledge and Teaching:Foundations of the New Reform. Harvard Educational Review, 57(1), 1–23. https://doi.org/10.17763/haer.57.1.j463w79r56455411
Shulman, L. S. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational Researcher, 15(2), 4–14.
Siegler, R. (2017). Build It and They Will Come. In D. C. Geary, D. B. Berch, R. J. Ochsendorf, & K. M. Koepke (Eds.), Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805086-6/00019-9
Siegler, R., & Pyke, A. A. (2013). Developmental and individual differences in understanding of fractions. Developmental Psychology, 49(10), 1994–2004. https://doi.org/10.1037/a0031200
Suryadi, D. (2019). Landasan Filosofis Penelitian Desain Didaktis (DDR) (Tim Gapura Press (ed.)). Gapura Press.
Tirosh, D., Tsamir, P., & Hershkovitz, S. (2013). Insights into children’s intuitions of addition, subtraction, multiplication and division. In A. Cockburn & G. Littler (Eds.), Mathematical Misconceptions: A Guide for Primary Teachers (pp. 54–70). SAGE Publications Ltd. https://doi.org/10.4135/9781446269121.n5
Vygotsky, L. (1986). Thought and language (2nd ed.). MA: MIT Press.
Widjaja, W., Stacey, K., & Steinle, V. (2008). Misconceptions About Density of Decimals : Insights From Indonesian Pre-Service Teachers’ Work. Journal for Science and Mathematics Education in Southeast Asia, 31(2), 117–131. http://dro.deakin.edu.au/view/DU:30048398
Wijaya, A. (2017). The relationships between Indonesian fourth graders’ difficulties in fractions and the opportunity to learn fractions: A snapshot of TIMSS results. International Journal of Instruction, 10(4), 221–236. https://doi.org/10.12973/iji.2017.10413a
Downloads
Published
Issue
Section
Citation Check
License
Penulis yang menerbitkan karyanya ke jurnal ini setuju dengan persyaratan berikut:
Penulis menyerahkan hak cipta dan memberikan hak penerbitan pertama kepada jurnal, dengan karya yang secara serentak dilisensikan di bawah Lisensi: Creative Commons Attribution - Share Alike 4.0 Internasional License yang memungkinkan orang lain membagikan karya dengan pengakuan penerbitan awal dan kepenulisan karya di jurnal ini.